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Abstract-The validity of the critical supersaturation model (CSM) for predicting mass transfer effects 
of nonequilibrium fog formation in thermal boundary layers is examined by comparing CSM predictions 
with those of a more complete application of homogeneous nucleation theory to a simple flow with molecu- 
lar transport. Expressions for the nucleation kinetics and droplet growth are combined with the steady one- 
dimensional conservation equations and suitably transformed to allow a digital computer solution of the 
vaporization of a hot condensed phase into a cold gaseous medium. Using a one dimensional film model 
of the thermal boundary layer, predictions of boundary layer profiles and the effects of nonequilibrium 
fog formation are obtained and, as anticipated by the CSM, the gross effect of fog formation is to signifi- 
cantly enhance the steady state vaporization rate. Our numerical calculations for methyl alcohol evapora- 
tion/condensation confirm the conceptual and computational utility of the critical supersaturation model 
for this class of problems, provided critical supersaturation predictions are based on large volumetric 
nucleation rates. Consistent with our purposes, the present investigation is limited to binary gas mixtures 
with (i) a Lewis number of unity and (ii) both mixture constituents of equal molecular weight. Since methyl 
alcohol vapor-air mixtures conform well to these restrictions, and are of interest in both research and 

technology, illustrative numerical results are given for this system. 
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collision diameter, equation (5) ; 
computer solution variable, equation 

(14); 
computer solution variable, equation 

(15); 
computer solution variable, equation 

(16); 
volumetric steady-state nucleation 
rate ; 
Boltzmann constant ; 
latent heat of vaporization ; 
Lewis number D,/[A/(p,c,)] ; 
argument of tangency condition func- 
tion, equation (41); 
local mass fraction ; 
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local mass flux ; 
local mass rate of vapor consumption 
(per unit volume) ; 
molecular weight ; 
Avogadro’s number ; 
scrir correlation constant, equation (28) ; 
argument of tangency condition func- 
tion, equation (42) ; 
pressure ; 
energy flux ; 
radius of growing droplet ; 
radius of average size fog droplets ; 
average separation between fog drop- 
lets ; 
critical drop radius, equation (2) ; 
gas law constant ; 
supersaturation ratio, p,/p,, ,.,( T) ; 
argument of tangency condition func- 
tion, equation (40) ; 
time ; 
local absolute temperature ; 
mass average velocity of condensable 
vapor-inert gas mixture ; 
diffusion velocity ; 
distance from vaporizing surface ; 
tangency condition function, equation 

(43). 

Greek symbols 
mass accommodation coefficient ; 
equation (1) (assumed equal to cl_,) ; 
thermal accommodation coefficient, 
equation (16) ; 
ratio of specific heats ; 
effective thickness of the thermal 
boundary layer ; 
thickness of the free molecular layer 
for droplet growth, equation (5) ; 
tangency condition function, equation 

(45) ; 
thermal conductivity of gas mixture ; 
average thermal conductivity of gas 
mixture in stagnant film ; 
exponent in sCrit correlation, equation 

(28) ; 
local density ; 

0, liquid surface tension. 

Subscripts 

bp, 
C, 

cn, 
crit, 

L, 
max, 
min, 

n, 
nc, 

sat, 

0, 

W, 

00, 

boiling point ; 
fog or condensed (liquid) phase ; 
condensation nucleii ; 
values taken under a condition of 
appreciable nucleation ; 
inert gas ; 
bulk liquid phase ; 
maximum ; 
minimum ; 
at location of measurable nucleation ; 
in the absence of homogeneous nuclea- 
tion (rizz’ = 0) ; 
thermodynamic saturation ; 
condensable vapor ; 
at phase boundary (vaporizing surface) ; 
in the free stream (cold boundary). 

Miscellaneous 

V, Laplacian (differential operator). 

1. INTRODUCTION 

THEORETICAL studies of nonequilibrium con- 
densation in fluid dynamic systems have been 
confined almost exclusively to the stepwise 
numerical calculation of vapor condensation 
in expansion nozzles, the major objective being 
to rationalize experimental data with existing 
theoretical expressions describing the rate of 
formation (nucleation) of particles of the new 
phase (see, e.g. [l, 21). However, there is an 
entire class of problems in mass transfer theory 
in which “fog” nucleation is encountered but 
the fundamental mechanism of vapor transport 
is molecular diffusion rather than convection 
(e.g. fog formation? in (i) moist gas streams 
adjacent to cold surfaces, (ii) above heated 
fluids evaporating into cooler surroundings, 
(iii) metal-containing diffusion flames, etc.). 
Proper inclusion of nucleation phenomena into 
boundary layer treatments presents a formidable 

t In the present context the terms fog, cloud, smoke, mist, 
fume, and aerosol are equivalent. 
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problem, due in part to the greatly increased 
complexity of the governing two-phase equa- 
tions, coupled to the laws of condensation 
kinetics and particle growth. Recently reported 
measurements of the “anomalously high” 
vaporization rate of molten metals in cool 
surroundings [3, 41 have focused attention 
upon the mass transfer implications of condensa- 
tion (fume formation) within thermal boundary 
layers. To explain the observed rates Hills and 
Szekely [5], and Turkdogan [6] proposed that 
vaporization rates are enhanced by vapor 
condensation in the steep temperature gradients 
surrounding the surface; i.e. since the nucleation 
of particles of the new phase occurs at the 
expense of the parent vapor concentration, the 
vapor concentration gradient at the vaporizing 
surface is increased. To predict the location of 
the “fog front”, and hence the magnitude of the 
enhancement, Turkdogan [6] suggested a gra- 
phical-numerical model based on the notion 
that the supersaturation which causes appreci- 
able nucleation (i.e. the so-called “critical 
supersaturation”, S,,in defined by a “critical 
nucleation rate”) is locally achieved within the 
boundary layer. According to this model, the 
S,,i,(T) relation coupled with an estimate of the 
condensation-free vapor concentration profile, 
allows a rational prediction of the steady state 
vaporization rate in the presence of “fogging”. 
This model, referred to hereafter as the “critical 
supersaturation model” (CSM), was analytic- 
ally reformulated and generalized by Rosner 
[7], who obtained simple expressions for the 
vaporization rate in terms of a universal function 
implicitly containing the condensation kinetics. 
Collectively, these authors have shown that 
the CSM is in qualitative agreement with 
available experimental data, although these 
data are not yet precise or extensive. 

In view of the present and future importance 
of this class of mass transfer phenomena, the 
main purpose of this investigation is to examine 
the validity of the CSM from a theoretical 
point of view. We hope to determine whether 
this seemingly ad hoc model offers a useful 

substitute for the more rigorous governing 
equations of mass transfer with condensation. 
To this end, we examine the condensation 
process via classical homogeneous nucleation 
theory in a deliberately simplified mass trans- 
fer system, using a numerical approach in 
which the governing conservation equations, 
suitably transformed, are rigorously solved on 
a digital computer. Mass-transfer rates pre- 
dicted by the CSM are then compared with 
those obtained numerically. To facilitate this 
comparison, and to fur the underlying ideas 
and limitations of the CSM, we proceed along 
the lines of Rosner’s treatment [7], introducing 
a few additional physical restrictions on the 
substances involved to embrace a wide spectrum 
of environmental conditions. 

2 NUCLEATION AND DROPLET GROWTH 

2.1 Homogeneous nucleation kinetics 
To quantitatively understand the effects of 

nonequilibrium fog formation within thermal 
boundary layers, the rate of production (i.e. 
“birth rate”) of liquid nuclei must be known. 
In the present study we exploit the classical 
theory of homogeneous nucleation from the 
vapor [8],t according to which density fluctua- 
tions (i.e. random collisions of vapor molecules) 
are responsible for the formation of condensa- 
tion nuclei under supersaturated conditions. 
The number of droplets nucleated per unit 
volume per unit time, J, is then given by [8] : 

t In keeping with our objectives, we deliberately side- 
step here the current controversy [9] over the validity of 
the classical theory (owing to its dependence on assumed 
macroscopic properties for the embryonic liquid phase). It 
is generally agreed that the classical theory of nucleation is 
qualitatively correct, and for some substances (e.g. methyl 
alcohol, investigated herein) the theory produces numerical 
results of sufficient accuracy for practical purposes. 
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where s is the local supersaturation ratio 
(s E p,/p,,,,), am is the mass accommodation 
coeffGent [lo], and r* is the radius of a droplet 
of critical size, given by 

r* =: 2M,a 

N,p,kT In s’ (2) 

It can be shown that equation (2) expresses an 
unstable equilib~um condition, between drop- 
lets of radius P and a supersaturated vapor 
phase, in that droplets of size r < r* tend to 
decrease in size while droplets of size r > r* 
grow indefinitely. For this reason the droplet 
of size r* is defined as the condensation nucleus. 

2.2 Droplet growth 
Condensation nuclei grow by absorbing 

the surrounding vapor at a rate dependent on 
the prevailing supersaturation. Based on the 
notion of a vacuous layer (i.e. a region of the 
order of the mean free path of the gas mixture) 
surrounding a growing droplet, Fuchs [It] 
formulated a quasi-steady (Maxwell-Langmuir- 
type [12]) model that provides a smooth 
transition between free-molecular droplet 
growth (which occurs for droplet sizes appreci- 
ably smaller than the mean-free-path?) and 
continuum or diffusion-controlled droplet 
growth (for droplet sizes much larger than the 
mean-free-path). Kang [13] has recently ex- 
tended the model to allow for the difference 
between the wevailing gas tem~rat~e and the 
droplet temperature. The resulting droplet 
growth expression is employed here in the 
following form : 

dr, S- 1 
-I= 
dt PL(~&T)~ shsor 

(3) 

where A is the slope of a linear approximation and A is defined by 
of the Clausius-Clapeyron equation for small 
?;, - T,[A z l-3 for 0 < L.(TL - T*~/(R”T~~ < A z h + Wh 

[ 1 Ear, + U - %,hd pu 
0*7]. The abovementioned temperature dif- 2(Y” - 1) * (2zR,T)+ 

ference between droplet and surrounding vapor 
can be shown to be _ 

+ (ri + 1) Ri 

[ 1 a,h,ipi 
2(y, - 1) (2nRiT)~ 

(6) 

In equations (3) and (4) 6 is the vacuous 
thickness given by the mean-free-path 

(41 where cc, is the thermal ac~o~odation 
coefficient [lo]. 

layer 
of a 

vapor molecule moving among a mixture of 
inert gas and vapor molecules “frozen” in 
posit&n ; i.e. ---. 

7 In the present class of problems condensation nuclei 

(5) are some two orders of magnitude smaller than the mean 
free path. 
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3. COMPUTER SOLUTION OF NONEQUILIBRIUM 

CONDENSATION WITHIN THE THERMAL 
BOUNDARY LAYER 

3.1 Governing equations for a one-dimensional 
film 

To simplify matters, the steady state boundary 
layer will be represented by an equivalent 
“stagnant” film, which comprises the entire 
resistance to heat and mass transfer (see Fig. 1). 

FIG. 1. Stagnant film model of nonequilibrium condensation 
within a thermal boundary layer. 

Although this model is physically unrealistic 
in certain applications, its one-dimensional 
nature will allow us to retain all salient aspects 
of nucleation kinetics, particle growth and trans- 
port without severe mathematical repercus- 
sions.? In addition, this model has (i) already 
proved to be quite useful in correlating mass- 
transfer data for true boundary layers (see, e.g. 
[14]) and (ii) correctly represents certain one- 
dimensional experimental configurations used 
in fog nucleation research. Moreover, with 
regard to (i), rather than absolute predictions, 
our chief concern here is an appraisal of the 
CSM (see Introduction), and the stagnant film 
can be viewed as a reasonable mathematical 
artifice to accomplish this. 

t As a droplet moves through the boundary layer it 
absorbs vapor in accord with its size, but its size is dependent 
on both its place of birth (nucleation) and the path it follows ; 
therefore, that rate of condensed phase production is a 
function of droplet “history” as well as position. This 
complication, coupled with the multi-dimensional character 
of most boundary layers, results in a formidable mathe- 
matical and computational problem. 

The one-dimensional flow system (Fig. 1) 
will be restricted to a fluid containing three 
components, viz. inert gas, condensed phase (in 
the form of fog), and parent vapor. The mean 
separation of droplets in the fog will be assumed 
to be sufficiently great (compared with their 
radii) that the droplets may be considered non- 
interacting. Hence, the growth behavior of each 
droplet is that of an isolated particle, where the 
local gas properties are identified with the 
properties at a “large distance” from the droplet. 
Consequently, droplets influence each other 
only through their combined influence on the 
surrounding gaseous medium. At any location 
droplets may be found varying in size, velocity, 
and temperature according to their histories. 
By assuming a large number of droplets, and 
suitably defining local average fog properties 
(density, temperature, etc.), the motions of the 
non-interacting droplets can be shown to 
correspond to the motions of a continuum [ 151. 

We identify the mass of the condensed phase 
per unit spatial volume by p. and, neglecting 
the volume occupied by the droplets, the inert 
gas density is pi. With respect to this same 
spatial volume the parent vapor density is pv. 
In this manner, we can express the overall 
density, p, of the three component mixtures as 
p = pe + pE, where pe is the density of the 
binary gas mixture consisting of the condensable 
vapor and the inert gas (hereafter referred to 
as the “gas mixture”) given by pe = pi + p”. In 
the usual manner, we introduce the mass 
fractions of the vapor and the inert gas, in the 
gas mixture, viz. m, s p,/p, and mi = pi/pB 
respectively. It is also convenient to define a 
local fog mass fraction, viz. 

m, = PJP. (7) 

For slow flows, with which we are dealing 
here, the momentum equation reveals the total 
pressure, p, to be constant. When radiant heat 
transfer and thermal diffusion are neglected, 
and the specific heats of the vapor and liquid 
phase components are assumed constant, 
the energy and vapor species conservation 



equations, integrated once, can be shown to 
take the following forms : 

x [L- c&T= - T)] - 4” (8) 

where TL is the local, average, droplet tempera- 
ture, and qrr and ti:’ are constants of integration 
identifiable with the total energy and mass flux 
(&i = pu) leaving the vaporizing surface. The 
condensed phase species conservation equation 
can be formally written 

where it has been assumed that the droplets 
do. not difise, but are convected with the local 
mass average velocity? of the gas mixture, u. 
It is well known that droplets with radii smaller 
than x: 10s6 cm (i.e. comparable to the dimen- 
sions of condensation nuclei) exhibit consider- 
able Brownian movement. However, as shown 
later in our numerical example (Section 3.2), 
nuclei grow so quickly through the diffusion 
stage that it seems highly unlikely that Brownian 
motion will yield a significant contribution to 
the transport of fog. 

To complete the system of equations [equa- 
tions (8HlO)] it remains to specify the condensed 
phase “source” term, tirz’. As a result of the 
Stefan flow, droplets are convected in the 
positive y-direction (see Fig. 1). The size of a 
droplet located at y, due to nucleation at 
location <(O < 4 < y) is 
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x(r) 

f 

= r*(5) + s ;$$d+ (11) 

c 

where r* is the radius of a liquid nucleus [see 
equation (2)]. The mass of the droplet at y is 
$p,ri(y), and the number of droplets nucleated 
per cubic volume per s at 4 is J(r); there- 
fore. since the flux of droplets at y due to 
nucleation at 5 is J(<)d<, in the absence of 
droplet coalescence the mass flux at y due to 
nucleation at 5 is ~~~~~~(y) J(T). d& The total 
mass flux of droplets, ti;, at y is the sum of 
contributions from all locations 5 such that 
0 < r d y; i.e. 

x J(t) dc?. (12) 

Since @’ = d&i/dy, the condensed phase pro- 
duction term is explicitly 

1 dr, ’ 
&Yy) = 4xp,. ;. -.$ 

S[ 

r*(5) 

0 

B 

s 1 
2 + id$dJ J(<)d< +$5cp,r*3J (13) 

t In the “stagnant” film the mass average velocity 1s due 
entirely to the Stefan flow (interfacial flow). In the case of 
vaporization, it is directed away from the vaporizing surface. 
Again, in keeping with our objectives, we do not consider here 
gravitational sedimentation of the largest droplets relative _ _^ _ 
to the Stetan flow. 

In view of the form of $‘I, the condensed 
phase species conservation equation [equation 
(lo)] is an ~~~egr~-~~~ere~~~~~ equation. For- 
tunately, however, by defining the following 
auxiliary dependent variables, this equation 
can be reduced to a coupled system of ordinary 
differential equations : 
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Z,(Y) = 871~~ d J(5) . d5. (16) 

Therefore, the final form of the conservation 
equations [equations (8)(10)] describing vapori- 
zation into a stagnant film in the presence of 
homogeneous nucleation, may be written as 
follows :t 

dm,_ 1 m:‘c,,(, - m,). (1 - m,) 
dy--Le’ II 

(18) 

II c 4mr (19) 

P dr, dZ1 
- lit”dtZ, + 4np,r*‘J 

dy v 
(20) 

dZ, 

dy- ” 
- $%Z3 + 8np,r*J (21) 

(22) 

where the mass average velocity, u, has been 
replaced by i&‘/p. The overall density, p, is 
related to the dependent variables of equations 
(17)-(22) by the following form of the ideal 
equation of state : 

P 1 ( 1-i 1 

‘=R,T l-m, 1 + [(Mi/M”) - l] m, I e(23) 

The above conservation equations are seen to 
consist of a boundary value problem [equations 
(17) and (18), subject to T = T, and m, = m,.,, 
aty = O,andT = T,andm, = m,,,aty = S,] 
coupled to an initial value problem [equations 

t See the nomenclature for remaining definitions. 

(19)-(22), subject to m, = I, = I, = I, = 0 at 
y = 01. Since equations (17) and (18) are of 
first order and have four boundary conditions, 
the vaporization flux, lit:‘, and the heat flux, 
f’, are eigenvalues of the equations. 

In equations (17H22) J and dr,/dt are 
determined by nucleation theory (Section 2.1) 
and droplet growth theory (Section 2.2). How- 
ever, droplet growth theory cannot be im- 
mediately applied without further discussion. It 
can be seen from equation (3) that the droplet 
growth rate is a function of droplet size, especi- 
ally for larger droplets. Now at any particular 
location within the fog there will be droplets 
of different sizes ; consequently, to meaningfully 
include equation (3) in the present form of the 
conservation equations, a suitable average drop- 
let size, f, is employed here. The arithmetic 
mean droplet radius? can be calculated by 
considering the total fluz of droplet radii at 
location y, viz. 

Dividing this term by the total number flux of 

droplets at location y, /J(t) d<, and using 

definitions (15) and (16), we find the arithmetic 
mean droplet radius to be 

k(Y) = z2(Y)/z3(Y)* (24) 

t Of course, other mean droplet size definitions exist- 
the three most commonly used being the mean according to 
droplet surface area and volume, and the (Sauter) volume/ 
surface mean. The logical choice in any given application 
is determined by the characteristics of fogs of particular 
importance. Fuchs [16] recommends the arithmetic mean 
radius for describing the rate of evaporation of fogs, and 
the surface-averaged mean to describe their optical density. 
In the present investigation, we have found that the various 
averages do not differ very much from each other (< 10 per 
cent deviation), hence our results should be unaffected by 
this arbitrariness. If information on particle size distribution 
is necessary, or if the particle cloud is extremely dilute, then 
the fog cannot be regarded as a continuous medium and 
must be locally described by a particle size distribution 
function. Under such circumstances, the droplet cloud 
continuum equation [equation (lo)] must be replaced by a 
Boltzmann-like equation for non-interacting particles. 
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Finally, it is of interest to present expressions 
descriptive of important properties of the fog. 
The fog concentration (in units of droplets per 
unit volume) can be shown to be 

Cc(Y) = grrp,(ir,/dr) (2 - ‘* 2)’ (25) 

The ratio of the spatial volume to the volume 
occupied by the average size droplet is easily 
obtained from equation (25) as 

6~~ dr, =- - 1 

$ f dt ’ (dl,/dy) - r*(dl,/dy) 
(26) 

where r_ is the average separation between 
droplets. According to our underlying assump- 
tions, the droplet concentration must be large 
enough for the fog to behave as a continuum, 
and the volume occupied by the droplets must 
be negligible (i.e. the separation between drop- 
lets must be large compared with their radii). 

To this level of approximation equations 
(17H22) govern the condensing flow of any 
vapor in a “stagnant” film. While it is not 
possible to integrate them analytically, it is 
possible to carry out numerical computations 
in any system for which the relevant properties 
of the vapor and condensate are known or 
estimable. Results of such computations are 
discussed below. 

3.2 Nonequilibrium condensation of methyl alcohol 
in the stagnant film 

Digital computer solutions of equations (17)- 
(22) were obtained for the vaporization of liquid 
methyl alcohol into air. Numerical techniques 
and physical data used in the calculations are 
outlined in Appendices A and B. Calculations 
were made for several liquid surface tempera- 
tures, T, and for a constant free stream tem- 
perature, T,, of 175°K (see Fig. l), the latter 
coinciding approximately with the freezing 
point of methyl alcohol. The concentration of 
methyl alcohol vapor at the outer edge of the 
stagnant film (i.e. the “free stream”) was taken 

to be zero. The thermal stagnant film thickness, 
6r, was arbitrarily set equal to 0.01 cm.? 

To simplify the numerical solution and to 
provide a basis for a comparison with the 
theory presented in Section 4, the following 
additional assumptions were made : 

A3.1 The mass fraction of the vapor at the 
vaporizing surface is equal to the saturation 
mass fraction at the surface temperature. 
A3.2 The local thermal conductivity, I of the 
gas mixture can be replaced by a constant 
average conductivity, 2, within the film. 
A3.3 The temperature difference between the 
fog and the gas mixture, TL - T, can be 
neglected. 
A3.4 The Lewis number, Le, is unity. 
A3.5 The latent heat of vaporization, L, is 
constant. 

Assumption A3.1 has been discussed exten- 
sively in the literature (see, e.g. [7, 17]), and it 
has been shown that only at very high mass- 
transfer rates is there a significant departure 
from equilibrium at the surface. Assumption 
A3.2 has proved extremely useful in indicating 
basic trends in combustion theory and, in the 
present problem, will permit straightforward 
comparisons with predictions of the CSM. 
From the results of the numerical solution 
and equation (4), the maximum value of T, - T 
is found to be of the order of 4 K, therefore 
validating A3.3 a posteriori. Few binary gas 
mixtures violate the condition Le = 1 to any 
great extent, and the approximation is especially 

t Techniques for evaluating meaningful film thicknesses 
in any particular environment are discussed throughout 
mass-transfer literature (see, e.g. [14]). In the numerical 
calculations it turns out that the dimensionless vaporization 
rate kpc,,.&/X (discussed in detail in Section 4.4) only 
increases by approximately 8 per cent for a change in 6, 
from 001 to 1.0 cm. Consideration of possible competitive 
vapor removal by foreign condensation nucleii indicates 
that thin boundary layers are less likely to be influenced by 
naturally occurring aerosol concentrations. In the present 
case, the concentration level of foreign nucleii necessary 
to strongly influence vapor removal in-the film [which can 
be shown to be of the order of (27zd,&)-i] would exceed 
those naturally occurring (~10~ - lo5 crne3 of ~1 u dia. 
particles) by more than 2 orders of magnitude. 
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good for methyl alcohol/air mixtures (for 
0 < m, < 0.1, Le remains within 5 per cent of 
unity). Finally, regarding A3.5, the latent heat 
is generally a weak function of temperature, 
and by choosing a suitable average value, the 
variation in L for methyl alcohol throughout 
the stagnant film is only 8 per cent. 

A typical picture of the predicted nucleation 
zone structure is presented in Figs. 2 and 3 
for T, = 277 K. Figure 2 reveals that within 
the nucleation zone the radius of the average 
size droplet, FL, is about an order of magnitude 
greater than the critical nucleation radius 
(r* x lo-’ cm or 10 A). The arithmetic mean 
droplet size leaving the nucleation zone is of 
the order of FL = 10e5 cm, and the largest 
droplet (nucleated at the position where J = 1 
nucleus cm- 3 set-‘) grows to a size of r,,,,, = 
5 x lo-’ cm. Since the mean free path through- 
out the stagnant film is approximately 6 x 10e6 
cm the droplets are predicted to grow very 
rapidly to sizes greater than the mean free 
path, consistent with our neglect of Brownian 
motiont and the use of a droplet growth theory 
that accounts for the transition region (Section 
2.2). In Fig. 3, it is seen that all properties vary 
monotonically across the nucleation zone, ex- 
cept, of course, for the nucleation rate, J, and 
the supersaturation ratio s. It appears that 
noticeable condensation does not. occur until 
s reaches a certain critical value at which J 
increases rapidly with small corresponding 
changes in s. The same phenomenon is ob- 
served in supersonic nozzles and expansion 
cloud chambers, where the value of s consistent 
with an appreciable condensation effect is 
referred to as the “critical supersaturation”, 
S,+p As noted below, the near constancy of s 

t Further estimates making use of the final results, the 
application of Fick’s law [viz c,V, = - DAdcJdy)] to the 
Brownian motion of fog droplets, and the Stokes-Einstein 
relation (see [ 181) for the computation of the effective droplet 
diffusion coefficient, 0, in the gas mixture shows that one 
is justified in neglecting fog diffision. The diffusion velocity 
of the fog, V, based on the average size particle within the 
nucleation zone, was found to be less that & of the mass 
average velocity. 
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FIG. 2. Typical variations of pertinent droplet sires within 
the thermal film in the presence of homogeneous nucleation 
(vaporizationofCH,OHintoair: T, = 227°K T, = 175” K, 

p = 1 atm, 6, = O-01 cm). 

0 O-2 0.4 0.6 06 I.0 

da, 

FIG. 3. Typical property variations within the thermal film 
in the presence of homogeneous nucleation (vaporization 
of CH,OH into air: T, = 277 K, T, = 175 K, p = 1 atm, 

6, = 0.01 cm). 
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within the nucleation zone is a basis of the 
CSM (Section 4). 

Temperature profiles in the stagnant film 
are shown in Fig. 4. Deviation from the usual 
linear profiles (found in a source-free stagnant 
film) is primarily due to the release of latent 
heat as the vapor condenses.?- Table 1 presents 

b.p.7 i--b.D. 

vaporization rate, &‘. Naturally, the vaporiza- 
tion rate and the structure of the nucleation 
zone are interrelated ; i.e. the solution of 
equations (17H22) depends on the numerical 
value of rizi However, it will be convenient to 
postpone discussion of riz:’ until the CSM is 
introduced. This simplified physical model, 
yielding basic fi:’ trends rather than detailed 
nucleation zone structure, avoids the numerical 

300 

6 
2 
; 250 277 

iz 
c” q_ 257 

I- 
232 

L 

(2) J 
(nuclei cme3 s-‘) 

-0 0 

?! 207 5.99 X 1o-4 

- 2 222 1.27 x 10”’ 
e 232 3.45 X 10” 
: 257 1.49 10’3 

- E 
X 

c” 271 6.37 x 1013 
--50 297 1.26 x lOI 

m.p. 
-loo 

0 0.2 0.4 0.6 D6 I.0 

Table 1. Maximum nucleation rate in the 
boundary layer 

(T, = 175 ‘;K, p = 1 atm, 6, = 0.01 cm) 

FIG. 4. Temperature profiles within the thermal film in the 
presence of homogeneous nucleation (CH,OH/air: T, = 

175 K, p = 1 atm, 6r = 0.01 cm). 

the maximum nucleation rate, J,,,, for several 
surface temperatures. The numerical calcula- 
tions reveal the nucleation rates to be extremely 
high, even at surface temperatures such that the 
vapor concentration within the film is every- 
where small. Finally, it should be mentioned 
that a typical methyl alcohol fog in the stagnant 
film may contain lOlo droplets cmm3 of average 
size T;, = lo- 5 cm, each droplet separated by 
about 20 rP These results justify the treatment 
of the fog as a dilute particle continuum. 

Thus far, we have said nothing about the net 

t At lugh surface temperatures (T, - T&J the net mass 
transfer also exerts an appreciable influence on the tem- 
perature profile. 

317 8.77 X 1Ol6 

solution of the complete set of governing equa- 
tions in predicting values of rit:‘. By applying 
this model to the vaporization of methyl alcohol, 
it is now possible to test its validity, as well as 
to examine the effect of nonequilibrium con- 
densation on the vaporization rate. 

4. THE CRITICAL SUPERSATURATION MODEL 

OF MASS TRANSFER IN THE PRESENCE 

OF NONEQUILIRRIUM VAPOR CONDENSATION 

4.1 Estimation and extrapolation of critical 
supersaturation data 

The sensitive relation between s and J is 
clearly illustrated in Fig. 5 for water vapor. 
Suppose, for a configuration like that shown in 
Fig. 1, we guess at the nucleation rate cor- 
responding to an appreciable condensation 
effect; e.g. for H,O vapor at WC, we take an 
appreciable nucleation rate to be, say, Jcrit = 
10’ nuclei cme3 s- ’ .-f The critical supersatura- 
tion ratio, scrit, for this nucleation rate is 4.47. 

t The subscript “wit” refers to values taken at the loca- 
tion of measurable condensation. The nucleation rate 
Jrrit (discussed in Section 3.2) is approximately equal to J,,,. 
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Had we chosen an appreciable nucleation rate 
to be as high as lo4 or as low as 1, we would have 
arrived at a critical supersaturation between 
4-22 and 4.78. Therefore, an upcertainty of 
even a few orders of magnitude in the value of 

Tempemture, K 

I- 

IO'O 
102 - 

6- 

4- 0°C 

3OT 

2- 

'loo I 1 1 
IO' IO2 IO' IO' 

Nucleation rote, J, nuclei crams-’ 

FIG. 5. Nucleation rates from Frenkel’s equation [(l) and 
(2)], for H,O. 

Merit has relatively little effect on the corres- 
ponding value of scrit. t 

Typical critical supersaturation data for 
various substances are shown in Fig. 6. These 
data were obtained by substituting an assumed 
value Of Jc,i, into the following form of Frenkel’s 
equation, equations (1) and (2) : 

(27) 

where pv,Sm is expressed in torr and all other 
quantities are in c.g.s. units. The physical data 
used in obtaining these curves are collected in 
Appendix B ; however, it should be remarked 

t Since J varies linearly with tz,,, [sea equation (l)], the 
same conclusion applies to an uncertainty in the value of the 
mass accomodation coefficient. 

4 - IO’O ’ 
I 

100 
ii,/ 

I 

‘V CH,OH N2 

0 5 IO 15 20 

IO' 

103/7; K-' 

1403 

) 

i 

FIG. 6. Critical supersaturation predictions from Frenkel’s 
equation [(l) and (2)] for H,O, CH,OH and N,. 

that all the physical quantities are based on 
the formation of liquid nuclei, even at tempera- 
tures well below the equilibrium freezing point.$ 

The Sc,it vs. Tdata can be correlated reasonably 
well by the formula 

In S,--it = const + [N/(&T)] o) (28) 

where N is a constant. For example, the curves 
shown in Fig. 6, for a choice of Merit = 1 nucleus 
cme3 s-l, can be accurately represented as 
follows : 

CH3OH In s,il = -0.134 + (236/T)2’37 

137 < T < 337 K (29) 

Hz0 In S,,it = -0.228 + (340/T)2’35 

228 < T < 373 K (30) 

N2 In s,,it = -0.688 + (9O/T)“99 

50-c T<77K. (31) 

$ Clusters of a supersaturated vapor, in an environment 
considerably lower in temperature than the equilibrium 
freezing point of the condensing substance, first form by 
homogeneous nucleation into droplets of a supercooled 
liquid. Only thereafter are these supercooled droplets 
crystallized. 
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Critical supersaturation data obtained in 
cloud chamber experiments support the above 
linear variation of In scrir with T-“. Although 
most investigators conclude that w is of the 
order of $ ; in fact, some experimenters report 
that In SC,, varies linearly with T-’ (see [19] for 
a summary of this work). The reason for this 
discrepancy probably lies in the relatively smaller 
temperature ranges over which the experimental 
results were obtained. In certain limited tempera- 
*ure ranges, the power w in equation (28) can be 
substantially reduced. For example, by expand- 
ing the last term in equation (30) in a Taylor 
series about T = 268 K, the scrit expression 
for H,O takes the following approximate form: 

In S,,it = - 2.59 + (1100/T) 

(230 < T < 300 K). (32) 

It follows from the above discussion that only a 
limited knowledge of the actual nucleation rate 
is sufficient to extrapolate reasonable absolute 
values of s,,it and its temperature variation. This 
fact forms the foundation of the critical super- 
saturation model. 

4.2 The critical supersaturation model (CSM) of 
mass transfer-generalized and extended 

Suppose, in the presence of a large tempera- 
ture gradient, the vapor being transported 
across the thermal boundary layer is observed 
to undergo homogeneous nucleation to the 
liquid phase (see Fig, 7).t The vaporizing surface 
is located at y = 0, and at y = y, a measurable 
nucleation effect is observed. Within the nucle- 
ation zone the pressure exerted by the condensing 
vapor is dictated by equation (27), thus, accord- 
ing to the discussion in Section 4.1, the vapor 
pressure (based on a reasonable choice of Jcrit) 

t It will be assumed here that the vapor is moving out- 
ward from a liquid or solid surface into the adjacent boundary 
layer (vaporization or sublimation); however, the following 
argument is also applicable to the case where the vapor is 
transported from the free stream into the boundary layer 
(i.e. surface condensation). An application of the CSM to 
predict incipient fog formation near cool surfaces is pre- 
sented in [20]. 

FIG. 7. Critical supersaturation model (CSM) of mass 
transfer in the presence of nonequilibrium condensation. 

is approximately pv,erir = pv,sclt . Scrip Hence, at 
location y = y, the followmg two physical 
constraints must be imposed on the vapor 
concentration profile : 

Po(Yn) = Pv,crirCYn) (33) 

Equation (33) simply re-expresses the physical 
existence of the critical supersaturation. The 
second constraint treats point y, as a “match” 
point where the vapor pressure profile outside 
the nucleation zone is smoothly joined to the 
vapor pressure profile within the nucleation 
zone ; i.e. equation (34) is the physical condition 
that fulfills the continuity of ap,/ay and, hence, 
continuity of the vapor diffusion flux through- 
out the boundary layer. In essence, equations 
(33) and (34) constitute the critical supersatura- 
tion model, which is essentially equivalent to 
representing the vapor pressure profile in the 
nucleation zone by po.,&J). 

From a mathematical standpoint, equations 
(33) and (34) may be viewed as a boundary 
condition on the vapor concentration profile at 
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the point of appreciable nucleation. It should 
be pointed out that since the location of the 
nucleation zone is unknown and can only be 
determined as part of the solution, conditions 
(33) and (34) are equivalent only to a single 
boundary condition. This boundary condition 
will hereafter be referred to as the “tangency 
condition”. 

To analytically reformulate the tangency 
condition in terms of properties of the 
evaporating liquid (or solid) surface, we retain 
assumptions A3.2-A3.5, and add the following 
assumptions : 

A4.1 The “products” of the condensation 
process, viz. the droplets,? are not directed 
towards the vaporizing surface but, instead, 
move in the positive y-direction and eventually 
leave the boundary layer (see Fig. 7). 
A4.2 The molecular weights. of the mixture 
components are approximately equal. 

Assumption A4.1 is justified only for specific 
geometries and is valid in the configuration 
considered in Fig. l.$ The region 0 < y < y, 
therefore constitutes a “source-free” region. The 
error due to A4.2 can obviously be quite large 
when the condensing vapor has a very different 
molecular weight from that of the inert gas 
through which it is transported [e.g. Fe(g)/ 
He(g)]. This is especially true when T, + Tbp 
(i.e. at high vaporization rates). However, to 

f As in Section 3, the vaporizing surface is in an inert gas 
environment so that the only “reaction” with which we 
have to contend is nucleation of the condensed phase. 

$ Certainly the effect of droplet motion in the direction 
of the vaporizing surface can hardly be ignored when con- 
sidering vaporization phenomena in, for example, a forward 
stagnation point or rotating disk boundarylayer (cf. e.g. 
D. R. Olander and R. Omberg, Paper presented at 64th 
AK/& Mtg., 13--22 March 1969, New Orleans, La.). 
Nevertheless, this assumption permits such considerable 
mathematical simplification it is worth including in the 
formulation, even at the expense of limiting the applicability 
of the tangency condition by ruling out certain boundary 
layer geometries. 

facilitate the comparisons of interest here this 
assumption proves convenient. 9: 

By combining A4.1, A4.2, A3.4, we obtain 
the well known heat-mass transfer analogy in 
the region between the vaporizing surface and 
he nucleation zone, viz. 

mu - mhd T - TCyn) 
m - m,bd = T, - T(Y,) * 

(35) 
“,W 

Since Mi x M” [A4.2], equation (35) may be 
written in terms of the vapor pressure; i.e. 

P” - P”(Y”) T - T(Y,) 

P - P,W = Tw - T(Y,)' 
(36) 

“,W 

Differentiating both sides of equation (36) with 
respect to the distance y, and invoking equations 
(33) and (34), we have 

( > aP”, wit 
ay Y=Y” 

(37) 

Now, in view of A3.5, the Clausius-Clapeyron 
equation can be written : 

P “. sa* = const , exp (38) 

Accordingly, the critical vapor pressure can be 
expressed as [see equation (28)] 

P “.crit = const.exp {- k - ($$)I} (39) 

In terms of the dimensionless constants?? 

$/y = Po, erit( L)/Pv, w (40) 

2’ = L/(R”T,) (41) 

$ Considering the fact that MCH!OH = 32.04 and Mai, = 
28.97, one can understand the choice of a methyl alcohol 
vapor-air mixture for illustrative calculations. Additionally, 
methyl alcohol vapor is largely unassociated in the saturated 
state, and its nucleation behavior (which has been studied 
experimentally [26]) conforms well to the predictions of 
classical nucleation theory. 

l-l- HP”,, = P., ,0..), then %, = s,,,(T,) 

B 
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Jv s [N/W” Ul w (42) 

and the dimensionless nucleation zone tempera- 
ture 

Y = K - T(Y”)l/TW 

the tangency condition [equation 
the following dimensionless form : 

[ 

Y 
exp 9-- 

1-Y 

J - (1 - Y)w 

(1 - Y)w 1 
Y 

(43) 

(37)] takes 

1 
- WQ _ y)a+lJ. (44 

The solution of this transcendental equation 
provides the temperature in the nucleation zone, 
T(y,), as a function of the properties evaluated 
at the vaporizing surface. In problems of mass 
transfer we are mainly concerned with the con- 
centration gradient; thus a useful dimensionless 
parameter is : 

A=!!!!? W/~Y),=o _ P” w W/~Y),=o (45) 
_A 

L . (am"laY), = 0 TV (@"/aY), = 0’ 
Equations (36) and (44) show that A is related to 

Y by 

A=Y+ 
(1 - Y)o+l 

9(1 - ,)0-i - 0.K’ 
(46) 

Inspection of equation (46) shows that A, as well 
as Y, are functions only of the properties of the 
vaporizing surface. The functions A(Y, K, 
g&, o) and Y(9, Jy: 5$x, u) will be referred 
to as the tangency condition functions.? 

t For negligible interfacial mass velocity but Mi # M,, 
Rosner [7] first derived equations (44) and (46) for the 
particular case w = 1. In this singular case, A is a universal 
function of only two parameters, viz. Y - JV and 5$,. 
and is shown plotted in [7, 201. Although the tangency 
condition represented by equations (44) and (46) is based 
on an analytical form [equation (2811 that best correlates 
s,,~, data, it clearly does not permit the remarkable degree 
of simplicity given by Rosner’s (w = 1) form. However, to 
facilitate a lair comparison between the CSM and the 
numerical solution of the governing equations, equations 
(44) and (46) will be employed in this investigation. 

4.3 The enhanced mass-transfer rate for the case 
qf vaporization and nonequilibrium con- 
densation 

Equation (45) reveals that the CSM provides a 
relation between the mass-transfer rate and the 
heat-transfer rate (through the function A, which 
incorporates all effects of nonequilibrium con- 
densation kinetics). I_Iowever, this model alone 
does not provide sufficient information to 
calculate the vaporization rate, i.e. some addi- 
tional knowledge of the temperature profile 
must be invoked. Fortunately, the unity Lewis 
number assumption enables us to do this, and 
thus obtain an analytic expression for the mass- 
transfer rate of the condensable vapor applicable 
not only for stagnant one-dimensional films but 
also for arbitrary mass transfer systems (boun- 
dary layers subject to A4.1, A4.2). Again, we 
consider the flow of a condensable vapor-inert 
gas mixture, together with the condensed phase 
in the form of a fog (treated as a continuum 
moving with the mass-average velocity of the 
gas phase in which the temperature difference 
between the fog and the gas mixture is neglected). 
The conservation equations [equations (8)- 
(10)] may be rewritten in vector notation as 
follows : 

V. &‘T -rh”.VT = - 
( > C 

P. u 

F (47) 

P,V 

for energy transfer? and 

V . [D,p,Vm, + W(1 - m, - m, + m,m,)] = 0 

(48) 

V. [m$“] = liii’ (49) 
for mass transfer. Now, assuming m,m, < [l - 
m, - m,] ;$ and utilizing the overall continuity 
equation governing the total mass flux (viz. 

t This simplified form of the energy equation is valid 
only when the specific heats of the inert gas and condensable 
vapor are equal. 

3 The validity of this assumption for the methyl alcohol- 
air mixture in the stagnant film is apparent from LI posteriori 
examination of the numerical solution in Section 3.2, which 
reveals that the ratio m,mJ(l - m, - m,) never exceeds 
1.4 X 10-Z. 
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7. I” = 0) and equation (49), the condensable 
vapor species conservation equation [equation 
(48)] becomes 

V . (Dp,Vm,) - 13’. Vm, = till. (50) 

Invoking Le w 1 in the above equation and 
eliminating the local rate of fog production, 
tii’, between the resulting equation and equation 
(47), we obtain the following differential equa- 
tion for the “composite” dependent variable 
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surface is found to be 

f?T 

0 ay ).=(J = 
% - T, T (L/c, vXmo,w - m,. ,) 

m v, w - m”,, 

am 
’ ay y=O;nc 0 -2 

L am 
-~ 0 ( > cp,” ay y=o’ 

(53) 

From equation (45), the concentration gradient 
at the vaporizing surface in the presence of 
nonequilibrium condensation is immediately 
obtained : 

(am,m, = o [(mu,, - 4, m 1 L/(cp,.T,)l + [1 - WT,)I 
(aW'aY)y=o;nc = [A . (k, w - m, ,Ym,, ,I + h,, - m,, ,I L/&,, ,T,)l 

(54) 

T + (m,L/c,, J : 

-rW.,(,.$m,> =O. (51) 

Therefore, subject to the assumptions made, 
T + (m,L/c,,) obeys a conservation equation 
of exactly the same form as those governing 
heat and/or mass transfer in non-condensing 
environments (i.e. when tiy’ = 0). Accordingly, 
we can write the following similarity relation- 
ship in the boundary layer : 

where (am,/ay),,=,;, is the concentration gra- 
dient at the vaporizing surface in the absence of 
condensation, but with all mass-transfer con- 
ditions (including ti”) the same. 

If the interfacial velocity is small (i.e. negligible 
Stefan flow), the left-hand side of equation (54) 
is simply the vaporization enhancement due to 
nonequilibrium condensation within the thermal 
boundary layer, where condensation kinetics 
have been included through the tangency 
condition function, A. Suppose, however, that 
the condensation process occurs everywhere in 
local thermodynamic equilibrium. Then, the 
vapor pressure throughout the boundary layer 
is dictated by the Clausius-Clapeyron equation 

T + hL/c,, .I - [T, + (6, wWp, Jl 
Tm + h, &/c,, J - [T, + h, ,Ac,, .)I 

= (mJnc - 4, w 

m,, m - m,, w 

(52) 

where (m,), is the local vapor mass fraction in 
the absence of condensation, but with all mass- 

[equation (38)]. Differentiating equation (38) 

transfer conditions (including the total mass flux 
with respect toy and evaluating the result at the 
vaporizing surface we obtain : 

IV) being the same as in the presence of conden- 
sation. Differentiating equation (52) with respect 
to J’. the temperature gradient at the vaporizing 

y_1 = P,,=,(G) (aT/ay)y=o 

T, * (ah s.rmp = o * 
(55) 
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By comparing this relation with equation (45) stagnant film is immediately obtained from 
we see that one need only replace d by 2-i equations (56) and (57)$: 

~:‘C,,“b h, w - m,, m 1 LAC,, “TW)l + [1 - (Tm/L)I 
x = In l+ [A . (1 - m”,wM”, ,I + [U - m,,d L/(C,,“T,)l 

(58) 

in equation (54) to obtain the vaporization 
enhancement when local equilibrium governs 
the condensation process. This is seen to be a 
particular case (first derived by Hills and 
Szekely [5] t) of the nonequilibrium generaliza- 
tion obtained here [equation (54)]. 

4.4 Comparison of the critical supersaturation 
model with the computer solution 

In order to compare the CSM with the more 
detailed analysis given in Section 3, including the 
effects of the Stefan flow and latent heat release, 
we again consider the simple geometry of the 
stagnant film system. In the absence of chemical 
or physical change, the steady state concentra- 
tion profile in the film of thickness 6, is given by 

(mJtc - m,,, = exp (%c,,,~lJ) - 1 
(56) m “9 ‘x - m,,, exp (fi:‘c,,,G,/X) - 1 

where tij2:I is the total mass flux throughout the 
stagnant film. Now, in the case of the stagnant 
film the total mass flux is equal to the vapori- 
zation rate; consequently, +I must necessarily 
equal the vaporization rate in the presence 
of condensation within the stagnant film, in 
order to maintain the required correspondence 
between mass-transfer conditions. Now, at the 
vaporizing surface the net flux of inert gas is 
zero, hence we have the following condition 

rilit:‘c, ” 
1 I= -W%lW,=o * (57) 

A 1 - m,,. w 

Introducing condensation kinetics through equa- 
tion (54), the enhanced vaporization rate in the 

t While not explicitly indicated by Hills and Szekely 
[5, 211, to apply their equilibrium results in systems with 
an appreciable contribution of condensate to the local mass 
flux, one must add the abovementioned restriction on 

m,m,. 

where [cf. A3.11 m,, w = m,,,,,(T,,,). Interestingly 
enough, we see that the CSM, reformulated 
and generalized as suggested by Rosner [7], 
predicts a vaporization relation paralleiing 
the familar stagnant film result : 

ti~c,,~S,/~ = In (1 + B) (59) 
where B is referred to as the “mass transfer 
number” or mass transfer “driving force”. 
In a stagnant film free of vapor sinks (i.e. 
* 11, 

m, = 0) B is given by (m,, w - m,, ,)/(l - m,, ,), 
and the corresponding vaporization rate will 
be referred to as the minimum (or non-enhanced) 
vaporization rate for the stagnant film, viz. 

Lriz:‘cp, vsTPlmin. 
Before proceeding with a comparison of the 

CSM with the computer solution it is of interest 
to consider the predicted location of the nuclea- 
tion zone. This can be accomplished by con- 
sidering the temperature profile in the source- 
free region of the stagnant film (0 < y < y,; 
m, = 0): 

T-L_ exp(fi~c,,yiJ) - 1 

T. - T, exp (liz:‘c; ,y,/J) - 1 ’ 
(60) 

Substituting equations (57) and (60) into defini- 
tion (45) and utilizing definition (43), we find : 

mu, Saf KJ r 1 1 - m,, ,,XL) . A (61) 
where ti:‘c,,$i,/2 is given by equation (58). 

r Equation (58) reveals ti;‘c,~?r/~ to be independent of 
the film thickness 6, [cf. Section 3.21. Interestingly enough, 
this CSM result [eq. (581 and its limiting cases] can be 
shown to apply equally well to the quasi-steady vaporiza- 
tion of a macroscopic droplet [24], provided one replaces 
6, by the instantaneous droplet radius. 
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To visualize the influence of homogeneous 
nucleation on mass transfer in the stagnant 
film, the dimensionless vaporization enhance- 
ment, tii/(hjl:l)mi” and nucleation zone location, 
yn/&., are shown in Fig. 8 for the vaporization 
of liquid methyl alcohol into air. The vaporiza- 
tion enhancement, starting from unity when the 
fog first appears at a finite distance from the 
vaporizing surface (y& = Y/d), increases with 
increasing T, reaching a maximum value when 
the nucleation zone takes a position closest 
to the vaporizing surface. With further increases 
in T, the enhancement ratio decreases toward 
unity, and the nucleation zone moves away 
from the wall, eventually leaving the film (when 
T, = Z&J. Thus, at high surface temperatures 
the latent heat release terms dominate the 
nucleation kinetic term, and the mass transfer 
number in equation (58) reduces to that for 
minimum vaporization.? The s,,it data used in 
obtaining the curves exhibited in Fig. 8 corres- 
pond to Jerif = 1 and Jerit = lo’* nuclei cme3 
s . - ’ $ In reference to the numerical solution 
data shown in the figure, y,/6, represents that 
point in the film where the nucleation rate attains 
its maximum value, J,,, [see Fig. 21. 

Agreement between the numerical solution 
and the CSM is seen to be good, provided the 
CSM predictions are based on “realistic” values 
of Jeri~ If a highly nonphysical choice of J,,i, is 
made, the model no longer represents a useful 
approximation to the rigorous solution of the 
governing equations. The results of the numerical 
calculations for methyl alcohol (presented in 
Table 1) indicated that the best choice of Jfrit is 
any value between 10” and 10” nuclei cmP3 
s- ‘. Numerical calculations of nonequilibrium 

t Although there is considerable scatter in the existing 
experimental data, vaporization rates reported by Turkodo- 
gan and Mills [3] seem to verify the diminishing‘enhance- 
ment effect at high surface temperatures (see, also [7, 211). 

$ In addition to the s,,~, correlation for Jcrir = 1 nuclei 
cmm3 s-r, equation (29), the following correlation was 
extrapolated from equation (27) for methyl alcohol : 

Ins = -0.0508 + (255/T)“@ cr,l (.J& = 10’2). 
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condensation in supersonic nozzles also lead to 
JErit criteria of this magnitude, e.g., Duff and 
Hill [l] have shown that a nucleation rate of 
J x lOi nuclei cm- 3 s- ’ for carbon dioxide 
corresponds to a measurable condensation 
effect on nozzle pressure distribution. Similar 
results were obtain by Griffin and Sherman [2] 
for expanding nitrogen, copper, and zinc vapors ; 
and by Head [22] for water vapor. At present, 
however, there seens to be no simple method for 
predicting the order of magnitude of JErir in 
novel mass transfer situations, which can be 
regarded as an intrinsic shortcoming of the 
CSM. 

Mention should be made of the fact that small 
values of Jfrit provide useful predictions of when 
measureable fogging effects first appear in a 
mass-transfer system.9 In Fig. 8 this is indicated 

Surfaea temperature, K 

> 

1.p. 

FIG. 8. Vaporization enhancements and nucleation zone 
position KH,OH/air: T, = 175 K, p = 1 atm, m,, m = 0; 

~5~ = 10-r cm (for .I-model)]. 

$ In [20] a value of .I,,, = 1 nuclei crne3 s-r was em- 
ployed in the prediction of incipient fog formation condi- 
tions. 
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by the “shift” in the appropriate value of Jc*ir at 
low wall temperatures, reflecting a rapidly 
decreasing nucleation rate in this region (see 
Table 1). 

5. CONCLUSIONS 

The critical supersaturation model (CSM) 
provides a simple closed form expression [equa- 
tion (54)] for condensation-enhanced vaporiza- 
tion rates in real boundary layers, in terms of a 
single function, A which incorporates condensa- 
tion kinetics. In addition, this result encom- 
passes the special (limiting) case of condensation 
at local thermodynamic equilibrium. By apply- 
ing the expression to the stagnant film system, 
we have shown that the model predicts enhanced 
vaporization rates consistent with a more com- 
plete theoretical model over a wide range of 
vaporizing liquid surface temperatures. While 
it is impossible to claim that this agreement 
between the CSM and the more complete 
theoretical model can be reproduced with any 
homogeneous nucleation expression, without 
further computations it is safe to assume that 
similar agreement will be found whenever the 
nucleation expression displays “critical super- 
saturation” (i.e. threshold) behaviour, as de- 
manded by experiment. 

However, while capable of revealing some 
important mass-transfer trends, the CSM pro- 
vides no information on condensation zone 
structure and the important question of particle 

size distribution. While it is, thus, only a small step 
into a new area ofconsiderable research potential, 
further theoretical studies would appear to be 
premature in the absence of more extensive and 
precise data. It is recognized that many of the 
assumptions [e.g. A4.1 and A4.21 exploited here 
will not apply in specificmass-transport systems.? 
Nevertheless the present model provides a useful 

+ Interestingly enough, in the zirconium droplet com- 
bustion exoeriments of L. Nelson and H. S. Levine (High 
Temp. Sci., i, in press) it appears that oxide vapor nucle&n. 
coagulation and particulate recapture by the parent droplet 
suppresses the net vaporization loss of zirconium in oxygen/ 
rare gas ambients. 

analytical basis for understanding more complex 
situations. Most important, the present analysis 
has revealed that selection of physically meaning- 
ful Jcrir (i.e. the actual nucleation rate, J,,,., to 
within, say, four orders of magnitude) is sufficient 
for accurate CSM predictions of vaporization 
enhancements. Although the seemingly arbitrary 
choice Merit = 1 nucleus cm- 3 s- ’ has proven to 
be a useful criterion in the prediction of incipient 

fog formation conditions,$ more complete com- 
puter solutions indicate that a much larger JErit 
is appropriate in the study of enhanced vapori- 
zation effects. There is some indirect evidence 
substantiating Jcrit w 1015 nuclei cm- 3 s-l 
(see Section 4.4) as a relevant criterion for 
s,,ir in some systems ; however, a method of 
selecting a physically meaningful Jerit a priori 

(i.e. in terms of known parameters of the mass- 
transfer problem) would constitute a useful next 
step. 
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APPENDIX A 

Numerical Solution of Equations (17)-(22) 
Due to the functional complexity of the 

nucleation rate, J, equations (17H22) constitute 
a highly nonlinear system of ordinary differen- 
tial equations. The system may be viewed as a 
boundary value problem, consisting of equation 
(17) and (18), in which the local mass fraction of 
condensate, m, is a source term. The value of 
m, is determined by the solution of the initial- 
value problem composed of equations (19)- 
(22). The boundary-value problem is coupled to 
the initial-value problem through the vapor 
mass fraction, m, the temperature, ‘I and the 
mass flux, *:‘. 

Our method of solution consisted of estimat- 
ing (via the CSM) the values of rizi and 4” and 
then systematically refining these estimates so 
that the resulting trial solution satisfies the 
boundary conditions. For each set of trial 
eigenvalues, the boundary-value system [( 17) 
and (18)], along with (19)(22), is treated as an 
initial-value problem, starting from y = 0 and 
integrating towards y = &. Iterative schemes 
have been developed for this method (known as 
the “shooting” method) that depend on each 
integration reaching the end of the interval, 
y = 6,. Unfortunately, the value of m&6,) was 
found to be extremely sensitive to the values of 
ti:’ and 4”, and the integration could not be 
carried to the end of the interval unless the 
eigenvalues were correct to four decimal places. 
Therefore, this class of iterative techniques 
was not practical. 

To overcome this difficulty, the integrations 
were carried out in stages in the y direction. 
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This method is greatly facilitated by the follow- the Runge-Kutta fourth-order method, as de- 
ing two simplifications: First, by eliminating veloped by Gill [23]. The effects of rounding 
the liquid condensate mass fraction, m,, be- errors were found to be large so that it was 
tween equations (17) and (18), a relation necessary to retain up to 16 decimal places in 
between the two eigenvalues can be derived,? the integration. A step size of 0.01 6, was chosen 
viz. 

w,, “b WC,, “) [m,, w - m,, ,I + CL - T,) 
x = In ’ + [4”M%‘c,, .)I - T, + V&,, ,) [l - m,, ,] 

and consequently a guess at only one eigenvalue 
is required for each integration. Second, as 
already indicated, the CSM provides a rational 
first estimate of the vaporization rate, r&’ (to 
within an accuracy of some 5 per cent). Two 
solutions, with corresponding eigenvalues $‘, , 
and $‘, II are integrated to such a point that 
the behavior of the m, profile clearly indicates 
whether the required solution lies between 
them or not. If not, other solutions are evaluated 
until a pair is found between which the required 
solution does lie. From the behavior of m,, an 
estimate is then made of the fractionf(0 < f < 1) 
such the $‘, I + f($‘, II - rig:, I) is a fair approxi- 
mation of the eigenvalue corresponding to the 
desired solution. A third solution is then started, 
not from y = 0 but from some larger value 
y, of y at which the value of m, does not change 
between integrations by more than ON)1 (times 
an appropriate power of 10). Depending on the 
behavior of the third solution, either another 
solution is started from y1 or a solution is 
started by interpolating between @,‘I,I and 
&z, I or fi’;:Ir at a point y, further out in the 
interval. Many forward integrations are re- 
quired (usually between 15 and 20) before 
y = 6, is reached. 

Each forward integration was carried out by 

t It should be noted that additional assumptions are 
implicit in this relation, viz. that the Lewis number is unity 
and the product m,m, is negligible compared with the 
term 1 - m, - m,. Justification for these assumptions 
(for a methyl alcohol vapor-air mixture) appears in Sections 
3.2 and 4.3. 

so as to yield a small truncation error. The 
calculations were executed on an IBM 360 
digital computer at the computer center of the 
Polytechnic Institute of Brooklyn. 

APPENDIX B 

Property Values of CH,OH and Air 
In this appendix pertinent physical properties 

of methyl alcohol and air are listed for the 
temperature range 175-320 K.? When necessary, 
the expressions for p,,J T), CI( T), and p,(T) were 
assumed valid for the liquid phase at tempera- 
tures below the triple point. The thermal 
accomodation coefficients of methyl alcohol 
vapor and air (relative to a liquid methyl 
alcohol surface) were taken as 1-O in the absence 
of information suggesting more appropriate 
values. All vapor pressures and temperatures 
are in units of Torr (mmHg) and degrees 
Kelvin, respectively. 

Methyl alcohol (M = 32.04) : 

In PSPl = 2053 - (4700/T) [251 
~7 = 48.58 - 0.0882 T, g s- ’ 1251 

pL = 1.032 - (7.013 x 10-4)T 
- (4.1 x lo-‘)T’, gem-3 WI 

1 = (2.575 x 10-5) - (1.216 x 10-7)T 

+ (5.22 x lo-“)T’, 

cal crn-‘~-~ K-’ [N 

7 Physical properties of water and nitrogen can be found 
in [24]. 
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D = O-133( 7’/273)2’o, cm2 s- ’ 
(for CH,OH/air) [251 

cP = O-3277, cal g- ’ K- ’ 
L = 291.5, cal g-’ 

(from expression for p,,,) 
d = 4.43 x 10e8, cm 

Pfd The following arithmetic mean conductivity, 
2, was employed in the numerical integration of 
the conservation equations (Section 3.2) : 

(from viscosity data) 
a, = 0.045 

[271 
[101 

x = (2, + A,)/2 

- 1.0 
Air (I?=-28.97) : 

3, = 5.74 x 10-5(T/273)0.s56, 
cal cm-’ s-1 “K-1 

where the mixture thermal conductivity was 
based on the following simplified form of the 

r27i 
Wassiljewa equation [28] : 

d = 3.32 x lo- 8, cm 
(from viscosity data) [271 

RENFORCEMENT DES VITESSES DE VAPORISATION LIMITEE PAR LA DIFFIJSIGN 
PAR LA CONDENSATION A L’INTERIEUM DE LA COUCHE LIMITE THERMIQUE- 

2. COMPARAISON DE LA THEORIE DE LA NUCLEATION HOMOGENE AVEC LE 
MODELE DE LA SURSATURATION CRITIQUE 

R&urn&La validitt du mod&e de la sursaturation critique (CSM) pour la prevision des effets de transport 
de masse de la formation de brouillard en nondquilibre dans des couches limites thermiques est examine 
comparant les previsions CSM avec celles dune application plus complete de la theorie de la nucleation 
homogene a un Coulement simple avec transport mol6culaire. Lea expressions pour la cinetique de la 
nucleation et la croissance des gouttelettes sent combinees avec les equations de conservation permanentes 
et unidimensionnelles et transformeesconvenablement pour permettre une solution au calculateur numerique 
de la vaporisation d’une phase conden& chaude dans un milieu gaxeux froid. En employant un modble de 
iihn unidimensionnel de la couche hmite thermique, on obtient des previsions des profils de couche limite 
et les effets de la formation de brouillard en nondquilibre et, comme il a et15 prbvu par le CSM, I’effet 
principal de la formation de brouillard est de renforcer seniiblement le flux de vaporisation en regime 
permanent. Nos calculs numeriques pour l’bvaporation et la condensation de I’alcool mtthyhque conferment 
l’utilite comme concept et pour le calcul du modble de sursaturation critique pour cette claw de problemes, 
pourvu que les previsions de sursaturation critique soient bas+es sur de grandes vitesses de nucleation 
volumiques. L’ttude actuelle est hmit6e, cc qui est compatible avec nos buts, aux melanges gaxeux binaires 
avec : 

(1”) un nombre de Lewis Cgal a I’uniti et, 
(2”) des constituants du melange avec des masses moltculaires Cgales. Puisque les melanges air-alcool 

methylique se conferment bien a ces restrictions et sont int&essantes a la fois pour la recherche et la tech- 
n6logie, on donne pour ce systbme des rtsultats numeriques illstratifs. 

STEIGERUNG DER DIFFUSIONSBEGRENZTEN VERDAMPFUNGSGESCHWINDIGKEITEN 
DURCH KONDENSATION INNERHALB DER WARMEGRENZSCHICHT 

2. VERGLEICH DER HOMOGENEN KRISTALLISATIONSKERNBILDUNGSTHEORIE 
MIT DEM KRITISCHEN SUPERSATURATIONSMODELL 

Zusammenfassung-Die Giiltigkeit des Modells der kritischen f_&ersiittigung (MkU) ftir die Voraussage 
des Einflusses von Stofftibertrangung aufdie instationtie Nebelbildung in thermischen Grenzschichten wird 
geprtift. Zu diesem Zweck werden Voraussagen des Mko mit solchen einer geneueren Anwendung der 
homogenen Keimbildungstheorie auf eine Strcimung mit moleckularem Transport verglichen. Ausdriicke 
ftir die Kinetik der Keimbildung und ftir das Tropenwachstum werden station&n, eindeimensionalen 
ErhaltungssWen kombiniert und ftir eine Berechnung auf einem Digitalcomputer trapsformiert Damit 
werden Losungen fiir die Verdampfung einer heissen fltissigen Phase in ein kaltes gasfirmiges Medium 
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erhalten. Unter Verwendung eines eindimensionalen Fihmnodells fur die thermische Grenzschicht werden 
Voraussagen fiir die Grenzschictprofile turd die Einfliisse von instantionarer Nebelbildung erhalten. 

Es ergibt sich, ebenso wie bei dem MkU, dass der wesentliche Einfluss der Nebelbildung die starke 
Behinderung der station&en Verdampfung ist. Unsem numerischen Berechmmgen ftir die Verdampfung/ 
Kondensation von Methylalkohol bestatigen die qualitative und quantitative Brauchbarkeit des Modells 
der kritischen Uberslttigung ftir diese Art von Problemen, vorausgesetzf dass die Voraussagen der kritischen 
Illbersattigung aufgrossen volumetrischen Keimbildungsgeschwindigkeiten beruhen. Entsprechend unseren 
Zielen ist die vorliegende Untersuchtmg begrenzt auf binlre Gasmischungen mit (1) einer Lewis-Zahl von 
1 und (2) gleichem Molekulargewicht der beiden Komponenten. Da Methylalkohol-Luft-Gemische diesen 
Bedingungen gut entsprechen und fiir Forschung und Technologie interessant sind, werden ftir dieses 

System numerische Ergebnisse angegeben. 

YCHOPEHBE HAPOOBPA30BAHBH, OI’PAHMYEHHOI’O 
~H~~Y3HE~, HYTEM KOHQEHCAHBM B HPEAEJIAX 

TEPMHYECKOPO PPAHHHHOI’O CJIOH 2. CPABHEHBE TEOPHH 
POMOPEHHOPO 3APO~bIIBEOBPA30BAHHH C MOAEJIbIO 

KPMTWIECKOI’O HEPECbIIJJEHMH 

AaHoTaqllsr-CnpaseRnllBocTb Moaenn rtptrrmiecuoro neperiacbImeuun ~nrr pacsera nepeuoca 
MaCCbI Up&l HepaBWOBeCHOM 06pa30BaHHH TyMaHa B TepMWIeCKMX nOrpaHH=IHblX CJIORX 

llCCJIeRJ'eTCR IIJ'TeM CpaBHeHRfi paCYeTOB, npOBeAeHHbIX n0 MOAeJIE4 KpATWIeCKOrO nepe- 

riacbrmerrun c pacqeraurr npu 6onee noxuou npliMerteurfa reopmf roMoremtor0 06pa30BaHWI 

nJ'3bIpbKOB ,!&TIH CJIyYaR TeVeHHR C MOJIeKYJIHpHbIM nepeHOCOM. BbIpaHCeHMR AJIfi KElHeTRKH 

06pa3OBaHHH nJ'3bIpbKOB II pOCTa KaIIeJIb 06xePHeHbI CO CTaIWOHapHbIMR OAHOMepHbIMEl 

YpaBHeHEIFIMH HenpepbIBHOCTH II npeo6pa30BaHbI TaKHM 06pa3ohi, YTO6bI AJIH paweTa 

WAnapeHlUl rOpWIet KOHJleHCHpyeMOti @a3bI B XOJIOffHyIO ra3OBYIO CpeAJ' MOmHO 6bIno 

MCnOJIb3OBaTb ~W#pOBJ'IO BbIWIC~HTeJIbHJ'IO MaIIIHHy. c nOMOIIJbI0 OAHOMepHOti IlJIeHO'IHOii 

~oflenn TepMwiecKoro norpaawworo c~10sI paccsllTaHbI npo@nnn norpaHwwor0 czoH II 

3~~eKTbIHepaBHOBeCHOrO06pa3OBaHIIRT~MaHa,~,KaK~BCTBOBa~O~3 MO&&JIM Kp~TWieCKOrO 

nepeHacbIweHMs, OCHOBHMM @aKTOpOM, BJIHRIoIIU%M Ha 06pa30BaHHe TyMaHa, 6b1no 3HaWi- 

TeabHoe yBenwieIwe cTaqxoHapHo8 CK~~~CTH wnapewifx. Hamu 9mxeuubre pacseTbI 

HcnapeHaH (KOHaeHCaUMI4) MeTHJIOBOrO CnHpTa rOBOpFIT 0 TOM, YTO MOReJIb KpHTWIeCKOrO 

nepeHacbIweHaH MO?KHO Hcnonb3oBaTb AJIH paweTa 3Toro KJIaCCa npo6neM Ha 3IJBM nps 

J,WIOBMM 6onbruHx 3HaYeHHtiO6%eMHbIX CKOpOCTetiO6pa30BaHHRny3bIpbKOB. B COOTBeTCTBl454 
CHarUMMRqR;IRMLIHaCTOR~eeRCCJIeROBaHLieOrpaHIl~llBajIOCb6AHapH~MMra30BblbCICMeCRMlCl 

CqMCJIOM ,iIbIO&iCa,paBHbIM eAIIHM~e,HCpaBHbIM MOJIeKyJIRpHbIM BeCOM 06014x KOMnOHeHTOB 
CMeCH. nOCKOJIbKJ' napOBO3JJJ'LIIHbIe CMeCll MeTMJIOBOrO CnHpTa, npeAcTaBJIRIOIWe ElHTepeC 

x,qFl HayKm CI T?XHAKM, XOpOIIIO YJJOBJIeTBOpRI0T 3TMM OrpaHMYeHAHM, WIH JJaHHOZt CMCTeMbI 

npMBOARTCR EiJIJIIOCTpaTPlBHbIe WlCJIeHHbIe pe3JVIbTaTbl. 


